Galaxy cluster mergers
Abstract
We present the results of an Eulerian adaptive mesh refinement (AMR) hydrodynamical and N-body simulation in a Λ cold dark matter (ΛCDM) cosmology. The simulation incorporates common cooling and heating processes for a primordial gas. A specific halo finder has been designed and applied in order to extract a sample of galaxy clusters directly obtained from the simulation without considering any resimulating scheme. We have studied the evolutionary history of the cluster haloes, and classified them into three categories depending on the merger events they have undergone: major mergers, minor mergers and relaxed clusters. The main properties of each one of these classes and the differences among them are discussed. The collisions among galaxy clusters are produced naturally by the non-linear evolution in the simulated cosmological volume; no controlled collisions have been considered. We pay special attention to discuss the role of merger events as a source of feedback and reheating, and their effects on the existence of cool cores in galaxy clusters, as well as in the scaling relations.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2009
- DOI:
- 10.1111/j.1365-2966.2009.15290.x
- arXiv:
- arXiv:0906.4024
- Bibcode:
- 2009MNRAS.399..410P
- Keywords:
-
- hydrodynamics;
- methods: numerical;
- galaxies: clusters: general;
- large-scale structure of Universe;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 17 pages, 11 figures, accepted for publication in MNRAS