A faint type of supernova from a white dwarf with a helium-rich companion
Abstract
Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The `old' environment near the supernova location, and the very low derived ejected mass (~0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive 44Ti.
- Publication:
-
Nature
- Pub Date:
- May 2010
- DOI:
- 10.1038/nature09056
- arXiv:
- arXiv:0906.2003
- Bibcode:
- 2010Natur.465..322P
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics;
- High Energy Physics - Phenomenology;
- Nuclear Theory
- E-Print:
- Revised to reflect published version in Nature, May 20th, 2010. Additional data and analysis are included