Entropy of random walk range
Abstract
We study the entropy of the set traced by an $n$-step random walk on $\Z^d$. We show that for $d \geq 3$, the entropy is of order $n$. For $d = 2$, the entropy is of order $n/\log^2 n$. These values are essentially governed by the size of the boundary of the trace.
- Publication:
-
Annales de L'Institut Henri Poincare Section (B) Probability and Statistics
- Pub Date:
- November 2010
- DOI:
- 10.1214/09-AIHP345
- arXiv:
- arXiv:0903.3179
- Bibcode:
- 2010AIHPB..46.1080B
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Combinatorics;
- 60C05
- E-Print:
- doi:10.1214/09-AIHP345