Stopping Cooling Flows with Cosmic-Ray Feedback
Abstract
Multi-Gyr two-dimensional calculations describe the gas dynamical evolution of hot gas in the Virgo cluster resulting from intermittent cavities formed with cosmic rays. Without cosmic rays, the gas evolves into a cooling flow, depositing about 85 solar masses per year of cold gas in the cluster core—such uninhibited cooling conflicts with X-ray spectra and many other observations. When cosmic rays are produced or deposited 10 kpc from the cluster center in bursts of about 1059 erg lasting 20 Myr and spaced at intervals of 200 Myr, the central cooling rate is greatly reduced to {\dot{M}} ≈ 0.1-1 solar masses per year, consistent with observations. After cosmic rays diffuse through the cavity walls, the ambient gas density is reduced and is buoyantly transported 30-70 kpc out into the cluster. Cosmic rays do not directly heat the gas and the modest shock heating around young cavities is offset by global cooling as the cluster gas expands. After several Gyr the hot gas density and temperature profiles remain similar to those observed, provided the time-averaged cosmic-ray luminosity is about L cr = 2.7 × 1043 erg s-1, approximately equal to the bolometric cooling rate LX within only ~56kpc. If an appreciable fraction of the relativistic cosmic rays is protons, gamma rays produced by pion decay following inelastic p-p collisions may be detected with the Fermi Gamma-Ray Telescope.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- April 2009
- DOI:
- arXiv:
- arXiv:0903.1135
- Bibcode:
- 2009ApJ...695L..49M
- Keywords:
-
- cooling flows;
- cosmic rays;
- galaxies: clusters: general;
- X-rays: galaxies: clusters;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 6 pages, accepted by ApJ Letters