The mixed chemistry phenomenon in Galactic Bulge PNe
Abstract
Aims: We investigate the dual-dust chemistry phenomenon in planetary nebulae (PNe) and discuss reasons for its occurrence, by analyzing Spitzer/IRS spectra of a sample of 40 Galactic PNe among which 26 belong to the Galactic Bulge (GB).
Methods: The mixed chemistry is derived from the simultaneous detection of Polycyclic Aromatic Hydrocarbon (PAH) features in the 6-14 μm range and crystalline silicates beyond 20 μm in the Spitzer/IRS spectra.
Results: Out of the 26 planetary nebulae observed in the Galactic Bulge, 21 show signatures of dual-dust chemistry. Our observations reveal that the simultaneous presence of oxygen and carbon-rich dust features in the infrared spectra of [WC]-type planetary nebulae is not restricted to late/cool [WC]-type stars, as previously suggested in the literature, but is a common feature associated with all [WC]-type planetary nebulae. Surprisingly, we found that the dual-dust chemistry is seen also in all observed weak emission-line stars (wels), as well as in other planetary nebulae with central stars being neither [WC] nor wels. Most sources observed display crystalline silicate features in their spectra, with only a few PNe exhibiting, in addition, amorphous silicate bands.
Conclusions: We appear to detect a recent change of chemistry at the end of the Asymptotic Giant Branch (AGB) evolution in the low-mass, high-metallicity population of GB PNe observed. The deficit of C-rich AGB stars in this environment suggests that the process of PAH formation in PNe occurs at the very end of the AGB phase. In addition, the population of low-mass, O-rich AGB stars in the Galactic Bulge, do not exhibit crystalline silicate features in their spectra. Thus, the high detection rate of dual-dust chemistry that we find cannot be explained by long-lived O-rich (primordial or circumbinary) disks. Our most plausible scenario is a final thermal pulse on the AGB (or just after), which could produce enhanced mass loss, capable of removing/mixing (sometimes completely) the remaining H-rich envelope and exposing the internal C-rich layers, and generating shocks responsible for the silicate crystallization.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- February 2009
- DOI:
- 10.1051/0004-6361:200811457
- arXiv:
- arXiv:0902.1049
- Bibcode:
- 2009A&A...495L...5P
- Keywords:
-
- planetary nebulae: general;
- circumstellar matter;
- stars: Wolf-Rayet;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Galaxy Astrophysics
- E-Print:
- Accepted for Publication in A&