High-field phase-diagram of Fe arsenide superconductors
Abstract
Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO 1- xF x at different doping levels confirm the upward curvature of the upper critical magnetic field Hc2 ( T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field Hc2 (0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses γ = ( mc/ mab) 1/2 for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high- Tc cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field Hm( T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.
- Publication:
-
Physica C Superconductivity
- Pub Date:
- May 2009
- DOI:
- 10.1016/j.physc.2009.03.010
- arXiv:
- arXiv:0902.0532
- Bibcode:
- 2009PhyC..469..566J
- Keywords:
-
- 74.25.-q;
- 74.25.Ha;
- 74.25.Op;
- 74.70.Dd;
- Properties of type I and type II superconductors;
- Magnetic properties;
- Mixed states critical fields and surface sheaths;
- Ternary quaternary and multinary compounds;
- Condensed Matter - Superconductivity;
- Condensed Matter - Strongly Correlated Electrons
- E-Print:
- 12 pages, for Physica C, special issue on the Fe oxypnictides (revised version)