Singular Manakov Flows and Geodesic Flows on Homogeneous Spaces
Abstract
We prove complete integrability of the Manakov-type SO(n)-invariant geodesic flows on homogeneous spaces $SO(n)/SO(k_1)\times...\times SO(k_r)$, for any choice of $k_1,...,k_r$, $k_1+...+k_r\le n$. In particular, a new proof of the integrability of a Manakov symmetric rigid body motion around a fixed point is presented. Also, the proof of integrability of the SO(n)-invariant Einstein metrics on $SO(k_1+k_2+k_3)/SO(k_1)\times SO(k_2)\times SO(k_3)$ and on the Stiefel manifolds $V(n,k)=SO(n)/SO(k)$ is given.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2009
- DOI:
- 10.48550/arXiv.0901.2444
- arXiv:
- arXiv:0901.2444
- Bibcode:
- 2009arXiv0901.2444D
- Keywords:
-
- Mathematical Physics;
- Mathematics - Differential Geometry;
- Nonlinear Sciences - Exactly Solvable and Integrable Systems;
- 70H06;
- 53D25;
- 37J35
- E-Print:
- 17 pages, minor changes