Torelli Theorem for the Deligne-Hitchin Moduli Space
Abstract
Fix integers g ≥ 3 and r ≥ 2, with r ≥ 3 if g = 3. Given a compact connected Riemann surface X of genus g, let $${\mathcal{M}_{{\rm DH}}(X)}$$ denote the corresponding $${\text{SL}(r, {\mathbb{C}})}$$ Deligne-Hitchin moduli space. We prove that the complex analytic space $${\mathcal{M}_{{\rm DH}}(X)}$$ determines (up to an isomorphism) the unordered pair $${\{X, \overline{X}\}}$$ , where $${\overline{X}}$$ is the Riemann surface defined by the opposite almost complex structure on X.
- Publication:
-
Communications in Mathematical Physics
- Pub Date:
- August 2009
- DOI:
- 10.1007/s00220-009-0831-3
- arXiv:
- arXiv:0901.0021
- Bibcode:
- 2009CMaPh.290..357B
- Keywords:
-
- Modulus Space;
- Vector Bundle;
- Riemann Surface;
- Isomorphism Class;
- Higgs Bundle;
- Mathematics - Algebraic Geometry;
- 14D20;
- 14C34
- E-Print:
- 14 pages