Compressed sensing imaging techniques for radio interferometry
Abstract
Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave background radiation, of particular interest for cosmology.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- May 2009
- DOI:
- 10.1111/j.1365-2966.2009.14665.x
- arXiv:
- arXiv:0812.4933
- Bibcode:
- 2009MNRAS.395.1733W
- Keywords:
-
- techniques: image processing;
- techniques: interferometric;
- cosmic microwave background;
- Astrophysics;
- Statistics - Applications
- E-Print:
- 10 pages, 1 figure. Version 2 matches version accepted for publication in MNRAS. Changes includes: writing corrections, clarifications of arguments, figure update, and a new subsection 4.1 commenting on the exact compliance of radio interferometric measurements with compressed sensing