Well-posedness for one-dimensional derivative nonlinear Schrödinger equations
Abstract
In this paper, we investigate the one-dimensional derivative nonlinear Schrödinger equations of the form $iu_t-u_{xx}+i\lambda\abs{u}^k u_x=0$ with non-zero $\lambda\in \Real$ and any real number $k\gs 5$. We establish the local well-posedness of the Cauchy problem with any initial data in $H^{1/2}$ by using the gauge transformation and the Littlewood-Paley decomposition.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2008
- DOI:
- 10.48550/arXiv.0811.4222
- arXiv:
- arXiv:0811.4222
- Bibcode:
- 2008arXiv0811.4222H
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q55;
- 35A07
- E-Print:
- 25 pages