The Hilbert Transform of a Measure
Abstract
Let $\fre$ be a homogeneous subset of $\bbR$ in the sense of Carleson. Let $\mu$ be a finite positive measure on $\bbR$ and $H_\mu(x)$ its Hilbert transform. We prove that if $\lim_{t\to\infty} t \abs{\fre\cap\{x\mid\abs{H_\mu(x)}>t\}}=0$, then $\mu_s(\fre)=0$, where $\mu_\s$ is the singular part of $\mu$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2008
- DOI:
- 10.48550/arXiv.0811.0791
- arXiv:
- arXiv:0811.0791
- Bibcode:
- 2008arXiv0811.0791P
- Keywords:
-
- Mathematical Physics;
- 42A50;
- 26A30;
- 42B25
- E-Print:
- 18 pages