Antivortex dynamics in magnetic nanostripes
Abstract
In a thin magnetic nanostripe, an antivortex nucleates inside a moving domain wall when driven by an in-plane magnetic field greater than the so-called Walker field. The nucleated antivortex must cross the width of the nanostripe before the domain wall can propagate again, leading to low average domain wall speeds. A large out-of-plane magnetic field, applied perpendicularly to the plane of the nanostripe, inhibits the nucleation of the antivortex leading to fast domain wall speeds for all in-plane driving fields. We present micromagnetic simulation results relating the antivortex dynamics to the strength of the out-of-plane field. An asymmetry in the motion is observed which depends on the alignment of the antivortex core magnetic moments to the direction of the out-of-plane field. The size of the core is directly related to its crossing speed, both depending on the strength of the perpendicular field and the alignment of the core moments and direction of the out-of-plane field.
- Publication:
-
Journal of Applied Physics
- Pub Date:
- April 2009
- DOI:
- 10.1063/1.3056139
- arXiv:
- arXiv:0810.1538
- Bibcode:
- 2009JAP...105gD502K
- Keywords:
-
- 85.70.Li;
- 75.50.Tt;
- 75.30.Cr;
- 75.70.Kw;
- Other magnetic recording and storage devices;
- Fine-particle systems;
- nanocrystalline materials;
- Saturation moments and magnetic susceptibilities;
- Domain structure;
- Condensed Matter - Materials Science
- E-Print:
- 10 pages, 3 figures