Distance Geometry in Quasihypermetric Spaces. I
Abstract
Let $(X, d)$ be a compact metric space and let $\mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I \colon \mathcal{M}(X) \to \R$ by \[I(\mu) = \int_X \int_X d(x,y) d\mu(x) d\mu(y),\] and set $M(X) = \sup I(\mu)$, where $\mu$ ranges over the collection of signed measures in $\mathcal{M}(X)$ of total mass 1. The metric space $(X, d)$ is quasihypermetric if for all $n \in \N$, all $\alpha_1, ..., \alpha_n \in \R$ satisfying $\sum_{i=1}^n \alpha_i = 0$ and all $x_1, ..., x_n \in X$, one has $\sum_{i,j=1}^n \alpha_i \alpha_j d(x_i, x_j) \leq 0$. Without the quasihypermetric property $M(X)$ is infinite, while with the property a natural semi-inner product structure becomes available on $\mathcal{M}_0(X)$, the subspace of $\mathcal{M}(X)$ of all measures of total mass 0. This paper explores: operators and functionals which provide natural links between the metric structure of $(X, d)$, the semi-inner product space structure of $\mathcal{M}_0(X)$ and the Banach space $C(X)$ of continuous real-valued functions on $X$; conditions equivalent to the quasihypermetric property; the topological properties of $\mathcal{M}_0(X)$ with the topology induced by the semi-inner product, and especially the relation of this topology to the weak-$*$ topology and the measure-norm topology on $\mathcal{M}_0(X)$; and the functional-analytic properties of $\mathcal{M}_0(X)$ as a semi-inner product space, including the question of its completeness. A later paper [Peter Nickolas and Reinhard Wolf, Distance Geometry in Quasihypermetric Spaces. II] will apply the work of this paper to a detailed analysis of the constant $M(X)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2008
- DOI:
- 10.48550/arXiv.0809.0740
- arXiv:
- arXiv:0809.0740
- Bibcode:
- 2008arXiv0809.0740N
- Keywords:
-
- Mathematics - Metric Geometry;
- 51K05 (Primary);
- 54E45;
- 31C45 (Secondary)
- E-Print:
- To appear in the Bulletin of the Australian Mathematical Society