Enumeration of $(k,2)$-noncrossing partitions
Abstract
A set partition is said to be $(k,d)$-noncrossing if it avoids the pattern $12... k12... d$. We find an explicit formula for the ordinary generating function of the number of $(k,d)$-noncrossing partitions of $\{1,2,...,n\}$ when $d=1,2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2008
- DOI:
- 10.48550/arXiv.0808.1157
- arXiv:
- arXiv:0808.1157
- Bibcode:
- 2008arXiv0808.1157M
- Keywords:
-
- Mathematics - Combinatorics;
- 05A05;
- 05A15
- E-Print:
- 9 pages, 1 table