Hard Lefschetz actions in Riemannian geometry with special holonomy
Abstract
It is known that the hard Lefschetz action, together with Kähler identities for Kähler (resp. hyperkähler) manifolds, determines a $\mathfrak{su}(1,1)_{sup}$ (resp. $\mathfrak{sp}(1,1)_{sup}$) Lie superalgebra action on differential forms. In this paper, we explain the geometric origin of this action, and we also generalize it to manifolds with other holonomy groups. For semi-flat Calabi-Yau (resp. hyperkähler) manifolds, these symmetries can be enlarged to a $\mathfrak{so}(2,2)_{sup}$ (resp. $\mathfrak{su}(2,2)_{sup}$) action.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2008
- DOI:
- 10.48550/arXiv.0808.0393
- arXiv:
- arXiv:0808.0393
- Bibcode:
- 2008arXiv0808.0393C
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Representation Theory
- E-Print:
- 16 pages