A variant of Tao's method with application to restricted sumsets
Abstract
In this paper, we develop Terence Tao's harmonic analysis method and apply it to restricted sumsets. The well known Cauchy-Davenport theorem asserts that if $A$ and $B$ are nonempty subsets of $Z/pZ$ with $p$ a prime, then $|A+B|\ge min{p,|A|+|B|-1}$, where $A+B={a+b: a\in A, b\in B}$. In 2005, Terence Tao gave a harmonic analysis proof of the Cauchy-Davenport theorem, by applying a new form of the uncertainty principle on Fourier transform. We modify Tao's method so that it can be used to prove the following extension of the Erdos-Heilbronn conjecture: If $A,B,S$ are nonempty subsets of $Z/pZ$ with $p$ a prime, then $|{a+b: a\in A, b\in B, a-b not\in S}|\ge min {p,|A|+|B|-2|S|-1}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2008
- DOI:
- 10.48550/arXiv.0808.0243
- arXiv:
- arXiv:0808.0243
- Bibcode:
- 2008arXiv0808.0243G
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics;
- 11B75;
- 05A05;
- 11P99;
- 11T99
- E-Print:
- J. Number Theory 129(2009), no.2, 434-438