Semidirect product decomposition of Coxeter groups
Abstract
Let $(W,S)$ be a Coxeter system, let $S=I \dot{\cup} J$ be a partition of $S$ such that no element of $I$ is conjugate to an element of $J$, let $\widetilde{J}$ be the set of $W_I$-conjugates of elements of $J$ and let $\widetilde{W}$ be the subgroup of $W$ generated by $\widetilde{J}$. We show that $W=\widetilde{W} \rtimes W_I$ and that $(\widetilde{W},\widetilde{J})$ is a Coxeter system.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2008
- DOI:
- 10.48550/arXiv.0805.4100
- arXiv:
- arXiv:0805.4100
- Bibcode:
- 2008arXiv0805.4100B
- Keywords:
-
- Mathematics - Group Theory;
- 20F55
- E-Print:
- 28 pages, one table. We have added some comments on parabolic subgroups, double cosets representatives, finite and affine Weyl groups, invariant theory, Solomon descent algebra