On antichains of spreading models of Banach spaces
Abstract
We show that for every separable Banach space $X$, either $\spw(X)$ (the set of all spreading models of $X$ generated by weakly-null sequences in $X$, modulo equivalence) is countable, or $\spw(X)$ contains an antichain of the size of the continuum. This answers a question of S. J. Dilworth, E. Odell and B. Sari.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2008
- DOI:
- 10.48550/arXiv.0805.2038
- arXiv:
- arXiv:0805.2038
- Bibcode:
- 2008arXiv0805.2038D
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Logic;
- 03E15;
- 46B20
- E-Print:
- 14 pages, no figures. Canadian Mathematical Bulletin (to appear)