Digital pulse-shape discrimination of fast neutrons and γ rays
Abstract
Discrimination of the detection of fast neutrons and γ rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF 2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADCs were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron- γ discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron- γ discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron- γ discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.
- Publication:
-
Nuclear Instruments and Methods in Physics Research A
- Pub Date:
- August 2008
- DOI:
- arXiv:
- arXiv:0805.0692
- Bibcode:
- 2008NIMPA.594...79S
- Keywords:
-
- Nuclear Experiment;
- Physics - Instrumentation and Detectors
- E-Print:
- 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in Physics Research A