New congruences for central binomial coefficients
Abstract
Let p be a prime and let a be a positive integer. In this paper we determine $\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k$ and $\sum_{k=1}^{p-1}\binom{2k}{k+d}/(km^{k-1})$ modulo $p$ for all d=0,...,p^a, where m is any integer not divisible by p. For example, we show that if $p\not=2,5$ then $$\sum_{k=1}^{p-1}(-1)^k\frac{\binom{2k}k}k=-5\frac{F_{p-(\frac p5)}}p (mod p),$$ where F_n is the n-th Fibonacci number and (-) is the Jacobi symbol. We also prove that if p>3 then $$\sum_{k=1}^{p-1}\frac{\binom{2k}k}k={8/9} p^2B_{p-3} (mod p^3),$$ where B_n denotes the n-th Bernoulli number.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2008
- DOI:
- arXiv:
- arXiv:0805.0563
- Bibcode:
- 2008arXiv0805.0563S
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics;
- 11B65;
- 05A10;
- 05A19;
- 11A07;
- 11B39;
- 11B68
- E-Print:
- Adv. in Appl. Math. 45(2010), no.1, 125-148.