Invariance de la Gamma-dimension pour certaines familles kählériennes de dimension 3
Abstract
In this article, we study some properties of deformation invariance of the Gamma-dimension (defined for X a compact kähler manifold). This birational invariant is defined as the codimension of the maximal compact subvarieties in the universal cover of X. In the surface case, the deformation invariance is a straightforward consequence of a theorem of Y.-T. Siu. Using some results from F. Campana et Q. Zhang, we settle this invariance for certain type of Kähler families of dimension 3.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2008
- DOI:
- arXiv:
- arXiv:0802.2894
- Bibcode:
- 2008arXiv0802.2894C
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Complex Variables;
- 14D15;
- 14E20;
- 32G05;
- 32Q55
- E-Print:
- 23 pages, in French, no figure