The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies
Abstract
We have measured the stellar velocity dispersions (σ*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z = 0.452, high-quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 106 < M BH < 109 M sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33 ± 0.21. The estimated BH masses are correlated with both the host luminosities (LH ) and the stellar velocity dispersions (σ*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatters in the correlations are large (~0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M BH vprop L 0.73±0.05 H and M BH vprop σ3.34±0.24 *. The amplitude of the M BH-σ* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion. While this dependence is probably caused at least in part by sample selection effects, it can account for the intrinsic scatter in the M BH-σ* relation, and may tie together the accretion rate with physical properties of the host bulge component. We find no significant evolution in the M BH-σ* relation with redshift, up to z ≈ 0.4, after controlling for possible dependences on other variables. Interested readers can contact the authors to obtain the eigenspectrum decomposition coefficients of our objects.
- Publication:
-
The Astronomical Journal
- Pub Date:
- March 2008
- DOI:
- arXiv:
- arXiv:0712.1630
- Bibcode:
- 2008AJ....135..928S
- Keywords:
-
- galaxies: active;
- galaxies: bulges;
- galaxies: nuclei;
- quasars: general;
- Astrophysics
- E-Print:
- Accepted for publication in AJ