Dynamical replica analysis of processes on finitely connected random graphs: I. Vertex covering
Abstract
We study the stochastic dynamics of Ising spin models with random bonds, interacting on finitely connected Poissonian random graphs. We use the dynamical replica method to derive closed dynamical equations for the joint spin-field probability distribution, and solve these within the replica-symmetry ansatz. Although the theory is developed in a general setting, with a view to future applications in various other fields, in this paper we apply it mainly to the dynamics of the Glauber algorithm (extended with cooling schedules) when running on the so-called vertex cover optimization problem. Our theoretical predictions are tested against both Monte Carlo simulations and known results from equilibrium studies. In contrast to previous dynamical analyses based on deriving closed equations for only a small number of scalar order parameters, the agreement between theory and experiment in the present study is nearly perfect.
- Publication:
-
Journal of Physics A Mathematical General
- Pub Date:
- March 2008
- DOI:
- 10.1088/1751-8113/41/11/115003
- arXiv:
- arXiv:0712.1139
- Bibcode:
- 2008JPhA...41k5003M
- Keywords:
-
- Condensed Matter - Disordered Systems and Neural Networks
- E-Print:
- 26 pages LaTeX, 5 figures