Sur l'irréductibilité d'une induite parabolique
Abstract
Let $F$ be a non-Archimedean locally compact field and let $D$ be a central division algebra over $F$. Let $\pi_1$ and $\pi_2$ be respectively two smooth irreducible representations of ${\rm GL}(n_1,D)$ and ${\rm GL}(n_2,F)$, $n_1, n_2 \geq 0$. In this article, we give some sufficient conditions on $\pi_1$ and $\pi_2$ so that the parabolically induced representation of $\pi_1 \otimes \pi_2$ to ${\rm GL}(n_1+n_2,D)$ has a unique irreducible quotient. In the case where $\pi_1$ is a cuspidal representation, we compute the Zelevinsky's parameters of such a quotient in terms of parameters of $\pi_2$. This is the key point for making explicit Howe correspondence for dual pairs of type II.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2007
- DOI:
- 10.48550/arXiv.0709.3194
- arXiv:
- arXiv:0709.3194
- Bibcode:
- 2007arXiv0709.3194M
- Keywords:
-
- Mathematics - Representation Theory;
- 22E50;
- 22E35