Intersection homology D-Modules and Bernstein polynomials associated with a complete intersection
Abstract
Let X be a complex analytic manifold. Given a closed subspace $Y\subset X$ of pure codimension p>0, we consider the sheaf of local algebraic cohomology $H^p_{[Y]}({\cal O}_X)$, and ${\cal L}(Y,X)\subset H^p_{[Y]}({\cal O}_X)$ the intersection homology D_X-Module of Brylinski-Kashiwara. We give here an algebraic characterization of the spaces Y such that L(Y,X) coincides with $H^p_{[Y]}({\cal O}_X)$, in terms of Bernstein-Sato functional equations.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2007
- DOI:
- 10.48550/arXiv.0709.1578
- arXiv:
- arXiv:0709.1578
- Bibcode:
- 2007arXiv0709.1578T
- Keywords:
-
- Mathematics - Algebraic Geometry;
- 32S40;
- 32C38;
- 32C40;
- 32C25;
- 14B05
- E-Print:
- 16 pages