An order result for the exponential divisor function
Abstract
The integer $d=\prod_{i=1}^s p_i^{b_i}$ is called an exponential divisor of $n=\prod_{i=1}^s p_i^{a_i}>1$ if $b_i \mid a_i$ for every $i\in \{1,2,...,s\}$. Let $\tau^{(e)}(n)$ denote the number of exponential divisors of $n$, where $\tau^{(e)}(1)=1$ by convention. The aim of the present paper is to establish an asymptotic formula with remainder term for the $r$-th power of the function $\tau^{(e)}$, where $r\ge 1$ is an integer. This improves an earlier result of {\sc M. V. Subbarao} [5].
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2007
- DOI:
- 10.48550/arXiv.0708.3552
- arXiv:
- arXiv:0708.3552
- Bibcode:
- 2007arXiv0708.3552T
- Keywords:
-
- Mathematics - Number Theory;
- 11A25;
- 11N37
- E-Print:
- Publ. Math. Debrecen, 71 (2007), no. 1-2, 165-171