Normal Hopf subalgebras in cocycle deformations of finite groups
Abstract
Let $G$ be a finite group and let $\pi: G \to G'$ be a surjective group homomorphism. Consider the cocycle deformation $L = H^{\sigma}$ of the Hopf algebra $H = k^G$ of $k$-valued linear functions on $G$, with respect to some convolution invertible 2-cocycle $\sigma$. The (normal) Hopf subalgebra $k^{G'} \subseteq k^G$ corresponds to a Hopf subalgebra $L' \subseteq L$. Our main result is an explicit necessary and sufficient condition for the normality of $L'$ in $L$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2007
- DOI:
- arXiv:
- arXiv:0708.3407
- Bibcode:
- 2007arXiv0708.3407G
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematics - Rings and Algebras;
- 16W30
- E-Print:
- Final version