Principal values for Riesz transforms and rectifiability
Abstract
Let $E\subset R^d$ with $H^n(E)<\infty$, where H^n stands for the $n$-dimensional Hausdorff measure. In this paper we prove that E is n-rectifiable if and only if the limit $$\lim_{\ve\to0}\int_{y\in E:|x-y|>\ve} \frac{x-y}{|x-y|^{n+1}} dH^n(y)$$ exists H^n-almost everywhere in E. To prove this result we obtain precise estimates from above and from below for the $L^2$ norm of the n-dimensional Riesz transforms on Lipschitz graphs.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2007
- DOI:
- 10.48550/arXiv.0708.0109
- arXiv:
- arXiv:0708.0109
- Bibcode:
- 2007arXiv0708.0109T
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Functional Analysis;
- 42B20;
- 28A75
- E-Print:
- 47 pages