Representations of tame quivers and affine canonical bases
Abstract
An integral PBW-basis of type $A_1^{(1)}$ has been constructed by Zhang [Z] and Chen [C] using the Auslander-Reiten quiver of the Kronecker quiver. We associate a geometric order to elements in this basis following an idea of Lusztig [L1] in the case of finite type. This leads to an algebraic realization of a bar-invariant basis of $\uq2$. For any affine symmetric type, we obtain an integral PBW-basis of the generic composition algebra, by using an algebraic construction of the integral basis for a tube in [DDX], an embedding of the module category of the Kronecker quiver into the module category of the tame quiver, and a list of the root vectors of indecomposable modules according to the preprojective, regular, and preinjective components of the Auslander-Reiten quiver of the tame quiver. When the basis elements are ordered to be compatible with the geometric order given by the dimensions of the orbit varieties and the extension varieties, we can show that the transition matrix between the PBW-basis and a monomial basis is triangular with diagonal entries equal to 1. Therefore we obtain a bar-invariant basis. By a orthogonalization for the PBW-basis with the inner product, we finally give an algebraic way to realize the canonical bases of the quantized enveloping algebras of all symmetric affine Kac-Moody Lie algebras.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2007
- DOI:
- 10.48550/arXiv.0706.1444
- arXiv:
- arXiv:0706.1444
- Bibcode:
- 2007arXiv0706.1444L
- Keywords:
-
- Mathematics - Quantum Algebra
- E-Print:
- 44 pages