Real interpolation of Sobolev spaces
Abstract
We prove that $W^{1}_{p}$ is an interpolation space between $W^{1}_{p_{1}}$ and $W^{1}_{p_{2}}$ for $p>q_{0}$ and $1\leq p_{1}<p<p_{2}\leq \infty$ on some classes of manifolds and general metric spaces, where $q_{0}$ depends on our hypotheses.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2007
- DOI:
- 10.48550/arXiv.0705.2216
- arXiv:
- arXiv:0705.2216
- Bibcode:
- 2007arXiv0705.2216B
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Metric Geometry;
- 46B70;
- 46M35
- E-Print:
- 30 pages