GA-NIFS: interstellar medium properties and tidal interactions in the evolved massive merging system B14-65666 at z = 7.152
Abstract
We present JWST/NIRSpec IFU observations of the z=7.152 galaxy system B14-65666, as part of the GA-NIFS survey. Line and continuum emission in this massive system (log10(M*/Msol)=9.8+/-0.2) is resolved into two strong cores, two weaker clumps, and a faint arc, as seen in recent JWST/NIRCam imaging. Our dataset contains detections of [OII]3727,3729, [NeIII]3869,3968, Balmer lines (HBeta, HGamma, HDelta, HEpsilon, HZeta), [OIII]5007, and weak [OIII]4363. Each spectrum is fit with a model that consistently incorporates interstellar medium conditions (i.e., electron temperature, T_e, electron density, n_e, and colour excess, E(B-V)). The resulting line fluxes are used to constrain the gas-phase metallicity (~0.3-0.4 solar) and HBeta-based SFR (310+/-40 Msol/yr) for each region. Common line ratio diagrams (O32-R23, R3-R2, Ne3O2-R23) reveal that each line-emitting region lies at the intersection of local and high-redshift galaxies, suggesting low ionisation and higher metallicity compared to the predominantly lower-mass galaxies studied with the JWST/NIRSpec IFU so far at z>5.5. Spaxel-by-spaxel fits reveal evidence for both narrow (FWHM<400 km/s) and broad (FWHM >500 km/s) line emission, the latter of which likely represents tidal interaction or outflows. Comparison to ALMA [CII]158um and [OIII]88um data shows a similar velocity structure, and optical-far infrared diagnostics suggest regions of high Lyman continuum escape fraction and n_e. This source lies on the mass-metallicity relation at z>4, suggesting an evolved nature. The two core galaxies show contrasting properties (e.g., SFR, M*, gas-phase metallicity), suggesting distinct evolutionary pathways. Combining the NIRSpec IFU and ALMA data sets, our analysis opens new windows into the merging system B14-65666.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.15027
- Bibcode:
- 2024arXiv241215027J
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 23 pages, 15 figures. Submitted to MNRAS