Monster radio jet (>66 kpc) observed in quasar at z$\sim$5
Abstract
We present the discovery of a large extended radio jet associated with the extremely radio-loud quasar J1601+3102 at $z\sim5$ from sub-arcsecond resolution imaging at 144 MHz with the LOFAR International Telescope. These large radio lobes have been argued to remain elusive at $z>4$ due to energy losses in the synchrotron emitting plasma as a result of scattering of the strong CMB at these high redshifts. Nonetheless, the 0.3" resolution radio image of J1601+3102 reveals a Northern and Southern radio lobe located at 9 and 57 kpc from the optical quasar, respectively. The measured jet size of 66 kpc makes J1601+3102 the largest extended radio jet at $z>4$ to date. However, it is expected to have an even larger physical size in reality due to projection effects brought about by the viewing angle. Furthermore, we observe the rest-frame UV spectrum of J1601+3102 with Gemini/GNIRS to examine its black hole properties, which results in a mass of 4.5$\times$10$^{8}$ M$_{\odot}$ with an Eddington luminosity ratio of 0.45. The BH mass is relatively low compared to the known high-$z$ quasar population, which suggests that a high BH mass is not strictly necessary to generate a powerful jet. This discovery of the first $\sim100$ kpc radio jet at $z>4$ shows that these objects exist despite energy losses from Inverse Compton scattering and can put invaluable constraints on the formation of the first radio-loud sources in the early Universe.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.16838
- Bibcode:
- 2024arXiv241116838G
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in ApJL. 15 pages, 5 figures