New Cold Subdwarf Discoveries from Backyard Worlds and a Metallicity Classification System for T Subdwarfs
Abstract
We report the results of a spectroscopic survey of candidate T subdwarfs identified by the Backyard Worlds: Planet 9 program. Near-infrared spectra of 31 sources with red $J-W2$ colors and large $J$-band reduced proper motions show varying signatures of subsolar metallicity, including strong collision-induced H$_2$ absorption, obscured methane and water features, and weak K I absorption. These metallicity signatures are supported by spectral model fits and 3D velocities, indicating thick disk and halo population membership for several sources. We identify three new metal-poor T subdwarfs ([M/H] $\lesssim$ $-$0.5), CWISE J062316.19+071505.6, WISEA J152443.14$-$262001.8, and CWISE J211250.11-052925.2; and 19 new "mild" subdwarfs with modest metal deficiency ([M/H] $\lesssim$ $-$0.25). We also identify three metal-rich brown dwarfs with thick disk kinematics. We provide kinematic evidence that the extreme L subdwarf 2MASS J053253.46+824646.5 and the mild T subdwarf CWISE J113010.07+313944.7 may be part of the Thamnos population, while the T subdwarf CWISE J155349.96+693355.2 may be part of the Helmi stream. We define a metallicity classification system for T dwarfs that adds mild subdwarfs (d/sdT), subdwarfs (sdT), and extreme subdwarfs (esdT) to the existing dwarf sequence. We also define a metallicity spectral index that correlates with metallicities inferred from spectral model fits and iron abundances from stellar primaries of benchmark T dwarf companions. This expansion of the T dwarf classification system supports investigations of ancient, metal-poor brown dwarfs now being uncovered in deep imaging and spectroscopic surveys.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.01378
- Bibcode:
- 2024arXiv241101378B
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 82 pages, 19 figures, accepted to ApJS