Foundation Models in Electrocardiogram: A Review
Abstract
The electrocardiogram (ECG) is ubiquitous across various healthcare domains, such as cardiac arrhythmia detection and sleep monitoring, making ECG analysis critically essential. Traditional deep learning models for ECG are task-specific, with a narrow scope of functionality and limited generalization capabilities. Recently, foundation models (FMs), also known as large pre-training models, have fundamentally reshaped the scheme of model design and representation learning, enhancing the performance across a variety of downstream tasks. This success has drawn interest in the exploration of FMs to address ECG-based medical challenges concurrently. This survey provides a timely, comprehensive and up-to-date overview of FMs for large-scale ECG-FMs. First, we offer a brief background introduction to FMs. Then, we discuss the model architectures, pre-training methods, and adaptation approaches of ECG-FMs from a methodology perspective. Despite the promising opportunities of ECG-FMs, we also outline the challenges and potential future directions. Overall, this survey aims to provide researchers and practitioners with insights into the research of ECG-FMs on theoretical underpinnings, domain-specific applications, and avenues for future exploration.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.19877
- Bibcode:
- 2024arXiv241019877H
- Keywords:
-
- Electrical Engineering and Systems Science - Signal Processing