Impact of Large-Scale Structure Systematics on Cosmological Parameter Estimation
Abstract
Large near-future galaxy surveys offer sufficient statistical power to make our cosmology analyses data-driven, limited primarily by systematic errors. Understanding the impact of systematics is therefore critical. We perform an end-to-end analysis to investigate the impact of some of the systematics that affect large-scale structure studies by doing an inference analysis using simulated density maps with various systematics; these include systematics caused by photometric redshifts (photo-$z$s), Galactic dust, structure induced by the telescope observing strategy and observing conditions, and incomplete covariance matrices. Specifically, we consider the impacts of incorrect photo-$z$ distributions (photometric biases, scatter, outliers; spectroscopic calibration biases), dust map resolution, incorrect dust law, selecting none or only some contaminant templates for deprojection, and using a diagonal covariance matrix instead of a full one. We quantify the biases induced by these systematics on cosmological parameter estimation using tomographic galaxy angular power spectra, with a focus on identifying whether the maximum plausible level of each systematic has an adverse impact on the estimation of key cosmological parameters from a galaxy clustering analysis with Rubin Observatory Legacy Survey of Space and Time (LSST). We find photo-$z$ systematics to be the most pressing out of the systematics investigated, with spectroscopic calibration biases leading to the greatest adverse impact while helpfully being flagged by a high $\chi^2$ value for the best fit model. Larger-than-expected photo-$z$ scatter, on the other hand, has a significant impact without necessarily indicating a poor fit. In contrast, in the analysis framework used in this work, biases from observational systematics and incomplete covariance matrices are comfortably subdominant.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.14265
- Bibcode:
- 2024arXiv240914265A
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 28 pages (17 figures, 5 tables) + 2 appendices (12 figures). To be submitted to JCAP