Radial Transport in High-Redshift Disk Galaxies Dominated by Inflowing Streams
Abstract
We study the radial transport of cold gas within simulated disk galaxies at cosmic noon, aiming at distinguishing between disk instability and accretion along cold streams from the cosmic web as its driving mechanism. Disks are selected based on kinematics and flattening from the VELA zoom-in hydro-cosmological simulations. The radial velocity fields in the disks are mapped, their averages are computed as a function of radius and over the whole disk, and the radial mass flux in each disk as a function of radius is obtained. The transport directly associated with fresh incoming streams is identified by selecting cold gas cells that are either on incoming streamlines or have low metallicity. The radial velocity fields in VELA disks are found to be highly non-axisymmetric, showing both inflows and outflows. However, in most cases, the average radial velocities, both as a function of radius and over the whole disk, are directed inwards, with the disk-averaged radial velocities typically amounting to a few percent of the disk-averaged rotational velocities. This is significantly lower than the expectations from various models that analytically predict the inward mass transport as driven by torques associated with disk instability. Under certain simplifying assumptions, the latter typically predict average inflows of more than $10\%$ of the rotational velocities. Analyzing the radial motions of streams and off-stream material, we find that the radial inflow in VELA disks is dominated by the stream inflows themselves, especially in the outer disks. The high inward radial velocities inferred in observed disks at cosmic noon, at the level of $\sim \! 20\%$ of the rotational velocities, may reflect inflowing streams from the cosmic web rather than being generated by disk instability.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.01589
- Bibcode:
- 2024arXiv240901589D
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 20 pages, 14 figures, submitted to A&