Euclid and KiDS-1000: Quantifying the impact of source-lens clustering on cosmic shear analyses
Abstract
Cosmic shear is a powerful probe of cosmological models and the transition from current Stage-III surveys like the Kilo-Degree Survey (KiDS) to the increased area and redshift range of Stage IV-surveys such as \Euclid will significantly increase the precision of weak lensing analyses. However, with increasing precision, the accuracy of model assumptions needs to be evaluated. In this study, we quantify the impact of the correlated clustering of weak lensing source galaxies with the surrounding large-scale structure, the so-called source-lens clustering (SLC), which is commonly neglected. We include the impact of realistic scatter in photometric redshift estimates, which impacts the assignment of galaxies to tomographic bins and increases the SLC. For this, we use simulated cosmological datasets with realistically distributed galaxies and measure shear correlation functions for both clustered and uniformly distributed source galaxies. Cosmological analyses are performed for both scenarios to quantify the impact of SLC on parameter inference for a KiDS-like and a \Euclid-like setting. We find for Stage III surveys like KiDS, SLC has a minor impact when accounting for nuisance parameters for intrinsic alignments and shifts of tomographic bins, as these nuisance parameters absorb the effect of SLC, thus changing their original meaning. For KiDS (\Euclid), the inferred intrinsic alignment amplitude $A_\mathrm{IA}$ changes from $0.11_{-0.46}^{+0.44}$ ($-0.009_{-0.080}^{+0.079}$) for data without SLC to $0.28_{-0.44}^{+0.42}$ ($0.022_{-0.082}^{+0.081}$) with SLC. However, fixed nuisance parameters lead to shifts in $S_8$ and $\Omega_\mathrm{m}$. For \Euclid we find that $S_8$ and $\Omega_\mathrm{m}$ are shifted by 0.14 and 0.12 $\sigma$, respectively, when including free nuisance parameters. Consequently, SLC on its own has only a small impact on the inferred parameters.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- 10.48550/arXiv.2407.09810
- arXiv:
- arXiv:2407.09810
- Bibcode:
- 2024arXiv240709810L
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 17 pages plus appendix, 10 figures, abstract abridged for arXiv