Identifying Host Galaxies of Supermassive Black Hole Binaries Found by PTAs
Abstract
Supermassive black hole binaries (SMBHBs) present us with exciting opportunities for multi-messenger science. These systems are thought to form naturally in galaxy mergers and therefore have the potential to produce electromagnetic (EM) radiation as well as gravitational waves (GWs) detectable with pulsar timing arrays (PTAs). Once GWs from individually resolved SMBHBs are detected, the identification of the host galaxy will be a major challenge due to the ambiguity in possible EM signatures and the poor localization capability of PTAs. In order to aid EM observations in choosing which sources to follow up, we attempt to quantify the number of plausible hosts in both realistic and idealistic scenarios. We outline a host galaxy identification pipeline that injects a single-source GW signal into a simulated PTA dataset, uses production-level techniques to recover the signal, quantifies the localization region and number of galaxies contained therein, and finally imposes cuts on the galaxies using the binary parameters estimated from the GW search. In an ideal case, we find that the 90% credible areas span 29 deg^2 to 241 deg^2, containing about 14 to 341 galaxies. After cuts, the number of galaxies remaining ranges from 22 at worst to 1 (the true host) at best. In a more realistic case, if the signal is sufficiently localized, the sky areas range from 287 deg^2 to 530 deg^2 and enclose about 285 to 1238 galaxies. After cuts, the number of galaxies is 397 at worst and 27 at best. While the signal-to-noise ratio is the primary determinant of the localization area of a given source, we find that the size of the area is also influenced by the proximity of nearby pulsars on the sky and the chirp mass of the source.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.04409
- arXiv:
- arXiv:2406.04409
- Bibcode:
- 2024arXiv240604409P
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- General Relativity and Quantum Cosmology
- E-Print:
- Submitted to ApJ