RIGEL: Simulating dwarf galaxies at solar mass resolution with radiative transfer and feedback from individual massive stars
Abstract
We introduce the RIGEL model, a novel framework to self-consistently model the effects of stellar feedback in the multiphase ISM of dwarf galaxies with radiative transfer (RT) on a star-by-star basis. The RIGEL model integrates detailed implementations of feedback from individual massive stars into the RHD code, AREPO-RT. It forms individual massive stars from the resolved multiphase ISM by sampling the IMF and tracks their evolution individually. The lifetimes, photon production rates, mass-loss rates, and wind velocities of these stars are determined by their initial masses and metallicities based on a library that incorporates a variety of stellar models. The RT equations are solved in seven spectral bins accounting for the IR to HeII ionizing bands, using an M1 RT scheme. The thermochemistry model tracks the non-equilibrium H, He chemistry and the equilibrium abundance of CI, CII, OI, OII, and CO to capture the thermodynamics of all ISM phases. We evaluated the performance of the RIGEL model using $1\,{\rm M}_\odot$ resolution simulations of isolated dwarf galaxies. We found that the SFR and ISRF show strong positive correlations to the metallicity of the galaxy. Photoionization and photoheating can reduce the SFR by an order of magnitude by removing the available cold-dense gas fuel for star formation. The ISRF also changes the thermal structure of the ISM. Radiative feedback occurs immediately after the birth of massive stars and rapidly disperses the molecular clouds within 1 Myr. As a consequence, radiative feedback reduces the age spread of star clusters to less than 2 Myr, prohibits the formation of massive star clusters, and shapes the cluster initial mass function to a steep power-law form with a slope of $\sim-2$. The mass-loading factor of the fiducial galaxy has a median of $\sim50$, while turning off radiative feedback reduces this factor by an order of magnitude.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- 10.48550/arXiv.2405.08869
- arXiv:
- arXiv:2405.08869
- Bibcode:
- 2024arXiv240508869D
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- 27 pages, 18 figures