Nonlinear stability and transition threshold for the planar helical flow
Abstract
In this paper, we study the nonlinear stability for the 3-D planar helical flow $(\delta^2\sin(m_0 y),\delta^2\cos(m_0 y),0)$ on torus $\mathbb{T}^3=\{(x_1,x_2,y)\big|x_1,x_2\in \mathbb{T}_{2\pi}, y\in \mathbb{T}_{2\pi \delta}, \delta\geq1\}$ for high Reynolds number $Re$. We prove that if the initial velocity $U_0$ satisfies $$ \left\|U_0-(\delta^2\sin(m_0 y),\delta^2\cos(m_0 y),0)\right\|_{X_0}\leq c_0 Re^{-7/4} $$ for some $c_0>0$ independent of $Re$, then the solution of 3-D incompressible Navier-Stokes equation is global in time and does not transit away from the planar helical flow. Here $\delta>1, m_0=\delta^{-1}$ and the norm $\|\cdot\|_{X_0}$ is defined in (1.8). This is a nonlinear stability result for 3-D non-shear flow and the transition threshold is less than $7/4$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2024
- DOI:
- arXiv:
- arXiv:2404.11298
- Bibcode:
- 2024arXiv240411298S
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q30;
- 35Q35;
- 76E06
- E-Print:
- 38 pages