Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies
Abstract
Observations that resolve nearby galaxies into individual regions across multiple phases of the gas–star formation–feedback "matter cycle" have provided a sharp new view of molecular clouds, star-formation efficiencies, timescales for region evolution, and stellar feedback. We synthesize these results, covering aspects relevant to the interpretation of observables, and conclude the following: ▪ The observed cloud-scale molecular gas surface density, line width, and internal pressure all reflect the large-scale galactic environment while also appearing mostly consistent with properties of a turbulent medium strongly affected by self-gravity. ▪ Cloud-scale data allow for statistical inference of both evolutionary and physical timescales. These suggest a period of cloud collapse on the order of the free-fall or turbulent crossing time (∼10–30 Myr) followed by forming massive stars and subsequent rapid (≲5 Myr) gas clearing after the onset of star formation. The star-formation efficiency per free-fall time is well determined over thousands of individual regions at ɛff ≈ 0.5‑0.3 +0.7%. ▪ The role of stellar feedback is now measured using multiple observational approaches. The net yield is constrained by the requirement to support the vertical weight of the galaxy disk. Meanwhile, the short gas-clearing timescales suggest a large role for presupernova feedback in cloud disruption. This leaves the supernovae free to exert a large influence on the larger galaxy, including stirring turbulence, launching galactic-scale winds, and carving superbubbles. The observed cloud-scale molecular gas surface density, line width, and internal pressure all reflect the large-scale galactic environment while also appearing mostly consistent with properties of a turbulent medium strongly affected by self-gravity. Cloud-scale data allow for statistical inference of both evolutionary and physical timescales. These suggest a period of cloud collapse on the order of the free-fall or turbulent crossing time (∼10–30 Myr) followed by forming massive stars and subsequent rapid (≲5 Myr) gas clearing after the onset of star formation. The star-formation efficiency per free-fall time is well determined over thousands of individual regions at ɛff ≈ 0.5‑0.3 +0.7%. The role of stellar feedback is now measured using multiple observational approaches. The net yield is constrained by the requirement to support the vertical weight of the galaxy disk. Meanwhile, the short gas-clearing timescales suggest a large role for presupernova feedback in cloud disruption. This leaves the supernovae free to exert a large influence on the larger galaxy, including stirring turbulence, launching galactic-scale winds, and carving superbubbles.
- Publication:
-
Annual Review of Astronomy and Astrophysics
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2403.19843
- Bibcode:
- 2024ARA&A..62..369S
- Keywords:
-
- interstellar medium;
- molecular clouds;
- stellar feedback;
- galaxies;
- galaxy centers;
- galaxy evolution;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 70 pages, 15 figures, 9 tables. Authors' version of an article to appear in Annual Reviews of Astronomy and Astrophysics 2024, Vol 62