Kernel bounds for parabolic operators having first-order degeneracy at the boundary
Abstract
We study kernel estimates for parabolic problems governed by singular elliptic operators \begin{equation*} \sum_{i,j=1}^{N+1}q_{ij}D_{ij}+c\frac{D_y}{y},\qquad c+1>0, \end{equation*} in the half-space $\mathbb{R}^{N+1}_+=\{(x,y): x \in \mathbb{R}^N, y>0\}$ under Neumann boundary conditions at $y=0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- arXiv:
- arXiv:2403.01959
- Bibcode:
- 2024arXiv240301959N
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35K08;
- 35K67;
- 47D07;
- 35J70;
- 35J75