Periodicity of bipartite walk on biregular graphs with conditional spectra
Abstract
In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover's walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k. Kubota has given a characterization of periodicity of Grover's walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota's results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover's walk on regular graphs.
- Publication:
-
Physica Scripta
- Pub Date:
- October 2024
- DOI:
- 10.1088/1402-4896/ad71ff
- arXiv:
- arXiv:2211.02752
- Bibcode:
- 2024PhyS...99j5120C
- Keywords:
-
- spectra;
- quantum walks;
- Grover's walk;
- algebraic graph theory;
- periodicity;
- discrete quantum walks;
- Mathematics - Combinatorics;
- Quantum Physics