Greenhouse gas monitoring using an IPDA lidar based on a dual-comb spectrometer
Abstract
We present the development of a multi-spectral, integrated-path differential absorption (IPDA) lidar based on a dual-comb spectrometer for greenhouse gas monitoring. The system uses the lidar returns from topographic targets and does not require retroreflectors. The two frequency combs are generated by electro-optic modulation of a single continuous-wave laser diode. One of the combs is pulsed, amplified, and transmitted into the atmosphere, while the other acts as a local oscillator for coherent detection. We discuss the physical principles of the measurement, outline a performance model including speckle effects, and detail the fiber-based lidar architecture and signal processing. A maximum likelihood algorithm is used to estimate simultaneously the gas concentration and the central frequency of the comb, allowing the system to work without frequency locking. H2O (at 1544 nm) and CO2 (at 1572 nm) concentrations are monitored with a precision of 3% and 5%, respectively, using a non-cooperative target at 700 m. In addition, the measured water vapor concentrations are in excellent agreement with in-situ measurements obtained from nearby weather stations. To our knowledge, this is the first complete experimental demonstration and performance assessment of greenhouse gas monitoring with a dual-comb spectrometer using lidar echoes from topographic targets.
- Publication:
-
Optics Express
- Pub Date:
- April 2024
- DOI:
- Bibcode:
- 2024OExpr..3213614P