SMART: spectral energy distributions Markov chain analysis with radiative transfer models
Abstract
In this paper we present the publicly available open-source spectral energy distribution (SED) fitting code SMART (Spectral energy distributions Markov chain Analysis with Radiative Transfer models). Implementing a Bayesian Markov chain Monte Carlo (MCMC) method, SMART fits the ultraviolet to millimetre SEDs of galaxies exclusively with radiative transfer models that currently constitute four types of pre-computed libraries, which describe the starburst, active galactic nucleus (AGN) torus, host galaxy, and polar dust components. An important novelty of SMART is that, although it fits SEDs exclusively with radiative transfer models, it takes comparable time to popular energy balance methods to run. Here we describe the key features of SMART and test it by fitting the multiwavelength SEDs of the 42 local ultraluminous infrared galaxies (ULIRGs) that constitute the HERschel Ultraluminous Infrared Galaxy Survey (HERUS) sample. The Spitzer spectroscopy data of the HERUS ULIRGs are included in the fitting at a spectral resolution, which is matched to that of the radiative transfer models. We also present other results that highlight the performance and versatility of SMART. SMART promises to be a useful tool for studying galaxy evolution in the JWST era. SMART is developed in PYTHON and is available at https://github.com/ch-var/SMART.git.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- June 2024
- DOI:
- 10.1093/mnras/stae1141
- arXiv:
- arXiv:2405.18130
- Bibcode:
- 2024MNRAS.531.2304V
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Accepted for publication in Monthly Notices of the Royal Astronomical Society