A two-component clumpy model for the shell evolution of classical novae: the case of V5668 Sgr
Abstract
The shell of the classical nova V5668 Sgr was resolved by ALMA at the frequency of 230 GHz 927 d after eruption, showing that most of the continuum bremsstrahlung emission originates in clumps with diameter smaller than 1015 cm. Using Very Large Array radio observations, obtained between days 2 and 1744 after eruption, at frequencies between 1 and 35 GHz, we modelled the nova spectra, assuming first that the shell is formed by a fixed number of identical clumps, and afterwards with the clumps having a power-law distribution of sizes, and were able to obtain the clump's physical parameters (radius, density, and temperature). We found that the density of the clumps decreases linearly with the increase of the shell's volume, which is compatible with the existence of a second media, hotter and thinner, in pressure equilibrium with the clumps. We show that this thinner media could be responsible for the emission of the hard X-rays observed at the early times of the nova eruption, and that the clump's temperature evolution follows that of the super-soft X-ray luminosity. We propose that the clumps were formed in the radiative shock produced by the collision of the fast wind of the white dwarf after eruption, with the slower velocity of the thermonuclear ejecta. From the total mass of the clumps, the observed expansion velocity and thermonuclear explosion models, we obtained an approximate value of 1.25 M⊙ for the mass of the white dwarf, a central temperature of 107 K and an accretion rate from the secondary star of 10-9-10-8 M⊙ yr-1.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- January 2024
- DOI:
- 10.1093/mnras/stad3647
- arXiv:
- arXiv:2311.13659
- Bibcode:
- 2024MNRAS.527.7482A
- Keywords:
-
- binaries: close;
- novae;
- radio continuum: individual (V5668 Sgr);
- X-rays: individual (V5668 Sgr);
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- accepted for publication in MNRAS