A near magnetic-to-kinetic energy equipartition flare from the relativistic jet in AO 0235 + 164 during 2013-2019
Abstract
We present the multiwavelength flaring activity of the blazar AO 0235 + 164 during its recent active period from 2013 to 2019. From a discrete correlation function analysis, we find a significant ($\gt 95~{{\ \rm per\ cent}}$) correlation between radio and gamma-ray light curves with flares at longer wavelengths following flares at shorter wavelengths. We identify a new jet component in 43 GHz Very Long Baseline Array data that was ejected from the radio core on MJD $57246^{+26}_{-30}$ (2015 August 12), during the peak of the 2015 radio flare. From the analysis of the jet component, we derived a Doppler factor of δvar = 28.5 ± 8.4, a bulk Lorentz factor of $\Gamma =16.8^{+3.6}_{-3.1}$, and an intrinsic viewing angle of $\theta _{\rm v}=1.42^{+1.07}_{-0.52}\textrm {~degrees}$. Investigation of the quasi-simultaneous radio data revealed a partially absorbed spectrum with the turnover frequency varying in the range of 10-70 GHz and the peak flux density varying in the range of 0.7-4 Jy. We find the synchrotron self-absorption magnetic field strength to be $B_{\rm SSA}=15.3^{+12.6}_{-14.0}\textrm {~mG}$ at the peak of the 2015 radio flare, which is comparable to the equipartition magnetic field strength of $B_{\rm EQ}=43.6^{+10.6}_{-10.4}\textrm {~mG}$ calculated for the same epoch. Additional analysis of the radio emission region in the relativistic jet of AO 0235 + 164 suggests that it did not significantly deviate from equipartition during its recent flaring activity.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- January 2024
- DOI:
- 10.1093/mnras/stad3250
- arXiv:
- arXiv:2310.16296
- Bibcode:
- 2024MNRAS.527..882C
- Keywords:
-
- galaxies: active;
- BL Lacertae objects: individual: AO 0235 + 164;
- galaxies: jets;
- gamma-rays: galaxies;
- radio continuum: galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 13 pages, 11 figures, 4 tables