Abstract
We present rest-frame optical spectra from Keck/MOSFIRE and Keck/NIRES of 16 candidate ultramassive galaxies targeted as part of the Massive Ancient Galaxies at z > 3 Near-Infrared Survey (MAGAZ3NE). These candidates were selected to have photometric redshifts 3 ≲ z phot <4, photometric stellar masses > 11.7, and well-sampled photometric spectral energy distributions (SEDs) from the UltraVISTA and VIDEO surveys. In contrast to previous spectroscopic observations of blue star-forming and poststarburst ultramassive galaxies, candidates in this sample have very red SEDs implying significant dust attenuation, old stellar ages, and/or active galactic nuclei (AGN). Of these galaxies, eight are revealed to be heavily dust-obscured 2.0 < z < 2.7 galaxies with strong emission lines, some showing broad features indicative of AGN, three are Type I AGN hosts at z > 3, one is a z ∼ 1.2 dusty galaxy, and four galaxies do not have a confirmed spectroscopic redshift. In fact, none of the sample has ∣z spec ‑ z phot∣ < 0.5, suggesting difficulties for photometric redshift programs in fitting similarly red SEDs. The prevalence of these red interloper galaxies suggests that the number densities of high-mass galaxies are overestimated at z ≳ 3 in large photometric surveys, helping to resolve the "impossibly early galaxy problem" and leading to much better agreement with cosmological galaxy simulations. A more complete spectroscopic survey of ultramassive galaxies is required to pin down the uncertainties on their number densities in the early Universe. ∗ The spectra presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.