Roaring to Softly Whispering: X-Ray Emission after ∼3.7 yr at the Location of the Transient AT2018cow and Implications for Accretion-powered Scenarios
Abstract
We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation at δ t ∼ 220 days. X-ray emission is significantly detected at a location consistent with AT 2018cow. The very soft X-ray spectrum and sustained luminosity are distinct from the spectral and temporal behavior of the LFBOT in the first ∼100 days and would possibly signal the emergence of a new emission component, although a robust association with AT 2018cow can only be claimed at δ t ∼ 220 days, while at δ t ∼ 1350 days contamination of the host galaxy cannot be excluded. We interpret these findings in the context of the late-time panchromatic emission from AT 2018cow, which includes the detection of persistent, slowly fading UV emission with ν L ν ≈ 1039 erg s‑1. Similar to previous works (and in analogy with arguments for ultraluminous X-ray sources), these late-time observations are consistent with thin disks around intermediate-mass black holes (with M • ≈ 103–104 M ☉) accreting at sub-Eddington rates. However, differently from previous studies, we find that smaller-mass black holes with M • ≈ 10–100 M ☉ accreting at ≳the Eddington rate cannot be ruled out and provide a natural explanation for the inferred compact size (R out ≈ 40 R ☉) of the accretion disk years after the optical flare. Most importantly, irrespective of the accretor mass, our study lends support to the hypothesis that LFBOTs are accretion-powered phenomena and that, specifically, LFBOTs constitute electromagnetic manifestations of super-Eddington accreting systems that evolve to ≲Eddington over a ≈100-day timescale. *Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- March 2024
- DOI:
- 10.3847/2041-8213/ad2764
- Bibcode:
- 2024ApJ...963L..24M
- Keywords:
-
- Accretion;
- Stellar accretion disks;
- Supernovae;
- Black holes;
- High energy astrophysics;
- X-ray astronomy;
- Transient sources;
- X-ray transient sources;
- 14;
- 1579;
- 1668;
- 162;
- 739;
- 1810;
- 1851;
- 1852