Discovery of three magnetic helium-rich hot subdwarfs with SALT
Abstract
Magnetic fields with strengths ranging from 300 to 500 kG have recently been discovered in a group of four extremely similar helium-rich hot subdwarf (He-sdO) stars. In addition to their strong magnetic fields, these He-sdO stars are characterised by common atmospheric parameters, clustering around Teff = 46 500 K, a log ɡ/cm s‑1 close to 6, and intermediate helium abundances. Here we present the discovery of three additional magnetic hot subdwarfs, J123359.44–674929.11, J125611.42-575333.45, and J144405.79–674400.93. These stars are again almost identical in terms of atmospheric parameters, but, at B ≈ 200 kG, their magnetic fields are somewhat weaker than those previously known. The close similarity of all known He-sdOs implies a finely tuned formation channel. We propose the merging of a He white dwarf with a H+He white dwarf. A differential rotation at the merger interface may initiate a toroidal magnetic field that evolves via a magnetic dynamo to produce a poloidal field. This field is either directly visible at the surface or might diffuse towards the surface if initially buried. We further discuss a broad absorption line centred at about 4630 Å that is common to all magnetic He-sdOs. This feature may not be related to the magnetic field but instead to the intermediate helium abundances in these He-sdO stars, allowing the strong He II 4686 Å line to be perturbed by collisions with hydrogen atoms.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2410.02737
- Bibcode:
- 2024A&A...691A.165D
- Keywords:
-
- line: identification;
- stars: magnetic field;
- subdwarfs;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Accepted for publication in A&